首页> 外文OA文献 >High-Performance FPGA Implementation of Equivariant Adaptive Separation via Independence Algorithm for Independent Component Analysis
【2h】

High-Performance FPGA Implementation of Equivariant Adaptive Separation via Independence Algorithm for Independent Component Analysis

机译:等变自适应分离的高性能FpGa实现   独立分量分析的独立算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Independent Component Analysis (ICA) is a dimensionality reduction techniquethat can boost efficiency of machine learning models that deal with probabilitydensity functions, e.g. Bayesian neural networks. Algorithms that implementadaptive ICA converge slower than their nonadaptive counterparts, however, theyare capable of tracking changes in underlying distributions of input features.This intrinsically slow convergence of adaptive methods combined with existinghardware implementations that operate at very low clock frequencies necessitatefundamental improvements in both algorithm and hardware design. This paperpresents an algorithm that allows efficient hardware implementation of ICA.Compared to previous work, our FPGA implementation of adaptive ICA improvesclock frequency by at least one order of magnitude and throughput by at leasttwo orders of magnitude. Our proposed algorithm is not limited to ICA and canbe used in various machine learning problems that use stochastic gradientdescent optimization.
机译:独立成分分析(ICA)是一种降维技术,可以提高处理概率密度函数(例如概率密度函数)的机器学习模型的效率。贝叶斯神经网络。实现自适应ICA的算法收敛速度比非自适应ICA算法慢,但是它们能够跟踪输入特征的基础分布的变化。自适应方法的内在缓慢收敛与在非常低的时钟频率下运行的现有硬件实现相结合,需要对算法和硬件进行根本性的改进设计。与现有的工作相比,我们的自适应ICA的FPGA实现将时钟频率提高了至少一个数量级,吞吐量提高了至少两个数量级。我们提出的算法不限于ICA,并且可以用于使用随机梯度下降优化的各种机器学习问题中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号